芯片元器件
HOME
芯片元器件
正文内容
芯片的极限 5nm就到极限了吗?谈芯片工艺发展路向
发布时间 : 2025-07-03
作者 : 小编
访问数量 : 23
扫码分享至微信

5nm就到极限了吗?谈芯片工艺发展路向

1芯片工作原理简介回顶部

【PConline 杂谈】 在上周举行的ISSCC(国际固态电路会议)上,Intel公布了其最新的半导体工艺进展,除了下一代10nm已经处于研发阶段中,也谈到了更加往后的半导体工艺计划。Intel表示摩尔定律即使到达7nm这个节点,仍然会继续有效,但是为了追上摩尔定律的脚步,7nm之后Intel很可能将会放弃传统的硅芯片工艺,而引入新的材料作为替代品。现在看来,10nm有可能将会成为硅芯片工艺的最后一站。事实上,随着硅芯片极限的逐渐逼近,这几年人们也越来越担心摩尔定律是否会最终失效,因为一旦半导体行业停滞不前,对于IT业界来说同样会产生极大的影响。本文就跟大家来谈一下目前半导体工艺的进展情况,以及一旦硅芯片工艺走到尽头,又有什么新的技术方向能够维系半导体工艺的持续发展。

5nm就到极限了吗?谈芯片工艺发展路向

让我们先来大致了解一下芯片是如何工作的。

Source:源极 Gate:栅极 Drain:漏极

一个芯片上整合了数以百万计的晶体管,而晶体管实际上就是一个开关,晶体管能通过影响相互的状态来处理信息。晶体管的栅极控制着电流能否由源极流向漏极。电子流过晶体管在逻辑上为“1”,不流过晶体管为“0”,“1”、“0”分别代表开、关两种状态。在目前的芯片中,连接晶体管源极和漏极的是硅元素。硅之所以被称作半导体,是因为它可以是导体,也可以是绝缘体。晶体管栅极上的电压控制着电流能否通过晶体管。

现有半导体工艺还能走多远?

而为了跟上摩尔定律的节奏,工程师必须不断缩小晶体管的尺寸。但是随着晶体管尺寸的缩小,源极和栅极间的沟道也在不断缩短,当沟道缩短到一定程度的时候,量子隧穿效应就会变得极为容易,换言之,就算是没有加电压,源极和漏极都可以认为是互通的,那么晶体管就失去了本身开关的作用,因此也没法实现逻辑电路。从现在来看,10nm工艺是能够实现的,7nm也有了一定的技术支撑,而5nm则是现有半导体工艺的物理极限。

硅芯片工艺自问世以来,一直遵循摩尔定律迅速发展。但摩尔定律毕竟不是真正的物理定律,而更多是对现象的一种推测或解释,我们也不可能期望半导体工艺可以永远跟随着摩尔定律所说发展下去。但是为了尽可能地延续摩尔定律,科研人员也在想尽办法,比如寻求硅的替代材料,以继续提高芯片的集成度和性能。接下来我们来谈一下几种未来有可能取代硅,成为新的半导体材料方案。

2硅工艺技术替代方案回顶部

III-V族化合物半导体

III-V族化合物成为FinFET上的鳍片

前文提到Intel可能将会在7nm节点放弃传统的硅芯片工艺,并在未来的几年中启用全新的半导体材料来作为继任者,目前看来,这种新材料很可能会是III-V族化合物半导体。该半导体材料是以III-V化合物取代FinFET上的硅鳍片,与硅相比,由于III-V化合物半导体拥有更大的带隙和更高的电子迁移率,因此新材料可以承受更高的工作温度和运行在更高的频率下。Intel在很早之前已经尝试III-V族化合物(磷化铟和砷化铟镓)与传统晶圆整合的化合物半导体。而在一年多前,IMEC(微电子研究中心,成员包括Intel、IBM、台积电、三星等半导体业界巨头)已经宣布成功在300mm 22nm晶圆上整合磷化铟和砷化铟镓,开发出FinFET化合物半导体。

比起其他替代材料,III-V族化合物半导体没有明显的物理缺陷,而且跟目前的硅芯片工艺相似,很多现有的技术都可以应用到新材料上,因此也被视为在10nm之后继续取代硅的理想材料。目前需要解决的最大问题,恐怕就是如何提高晶圆产量并降低工艺成本了。

石墨烯

电镜下的石墨烯,呈六边形结构

石墨烯被视为是一种梦幻材料,它具有很强的导电性、可弯折、强度高,这些特性可以被应用于各个领域中,甚至具有改变未来世界的潜力,也有不少人把它当成是取代硅,成为未来的半导体材料。但是真正把它应用于半导体领域,还需要克服不少的困难。

首先,通过前面我们可以知道,逻辑电路有“0”和“1”,也就是开和关两种状态,而这就需要有“能隙”——电子携带电流之前必须跃过的能量跨栏。但是因为石墨烯本身的导电性能太好,它没有能隙,也就是只能开,而不能关,这样是不能实现逻辑电路的。如果要利用石墨烯来制造半导体器件,那么我们还需要通过其他手段,在不破坏石墨烯本身特有的属性下,在石墨烯上面植入一个能隙。目前已经有不少针对这方面的研究,但要真正解决这个问题还需要相当长的时间。

而另外一个主要问题就是,要大批量和高质量地获得石墨烯,仍然是一件非常困难的事。目前增加石墨烯产量的手段其实并不少,但石墨烯边缘的六元环并不稳定,容易形成五元环或七元环,通过这些手段获取的石墨烯,往往会是多个畸形环所连成的多晶,从而影响本身的特性,这样生产出来的石墨烯就丧失了作为材料的意义了。

硅烯

具有相似结构的硅烯,可能是比石墨烯更好的方案

我们知道硅和碳具有相似的化学性质,研究人推测硅原子也可以像石墨烯那样,原子呈蜂窝状排列,形成硅烯这种物质。而硅烯相比于石墨烯的重要不同,就是硅烯拥有上述所说,可以实现逻辑电路所必要的能隙。

不过这种结构的硅单质,也只是在2010年才正式观察到,而事实上,在空气中,硅烯具有极强的不稳定性,即使在实验室中,硅烯的保存时间也很短。如果要制作硅烯晶体管,还需要尝试通过添加保护涂层等手段,保证硅烯不会变性,才可能应用于实际当中。虽然硅烯的应用面临着重重困难,但它仍然有希望赶超老大哥石墨烯,成为理想的半导体材料。

结语:

即使硅工艺快将走到尽头,未来仍可能有多种替代方案来接替硅的位置,并使摩尔定律继续延续下去。事实上,硅的替代材料还有多种,如IBM致力研究的碳纳米管等,此外也可以另辟蹊径,在使用现有工艺的情况下来提高单位面积下晶体管的集成数量(比如2.5D、3D堆叠等方案,目前在NAND、DRAM等存储产品中已有不少应用,不过对于IC芯片来说,发热问题不好解决),在未来甚至还可能有光子计算、量子计算等颠覆摩尔定律的超级计算机出现,有机会我们可以再继续展开讨论。但就目前而言,哪种技术能够最终成为计算的未来,谁也无法知晓。

做手机配件问卷调查·千元礼品等你拿!

人在江湖难免要向奸商交学费,被坑了也没关系,PConline来安慰您受伤的心,现在参与“关于手机配件的有奖调查”即有机会获得魅蓝Note手机(价值999元)、么么哒3N手机(价值899元)、邦克仕E520V移动电源(价值159元)以及其他丰富礼品,快来动动手指拿大奖!(点击查看详情)

芯片的工艺现在达到了5纳米,未来是多少?它有极限吗?

芯片,随着这几年的火热,相信小伙伴们都非常熟悉了。相比较那些泛泛而谈的介绍,今天芯片哥想说一些不一样的内容。

问一个问题,怎么去判断芯片的先进性?

芯片

也许有人会说,芯片哥问的这个问题好奇怪。怎么去判断芯片的先进性?当然是依据芯片的功能啊,这个还需要解释吗?

芯片的功能越多,越强大,芯片就自然而然就越先进啊。举一个很简单的例子就知道了.

华为海思的麒麟芯片9000,肯定是要比高通的骁龙芯片630先进很多。

首先麒麟芯片9000,它是支持5G功能,骁龙芯片630它就不支持。就凭这一点,就可以说明麒麟芯片9000比骁龙630要先进。

其次麒麟芯片9000,它的生产制造工艺采用的是最先进的5纳米,骁龙芯片630呢?则只有14纳米工艺。一个是5纳米,一个是14纳米,你说哪个芯片更先进?

这还需要分析判断吗?当然是麒麟芯片9000啊。

是的,判断芯片是否先进,它的指标有很多。比如刚刚提到的芯片功能和芯片的工艺,除了这些,还有芯片的功耗、芯片的运行速度以及芯片的开发水平等等。

在这些指标中,有一个指标比较特殊,它就是芯片的生产制造工艺。芯片的功能、芯片的功耗和芯片的运行速度,这些指标都是可以通过工程师不断地去改善,去提高。

唯独芯片的生产制造工艺,它是很难实现不断地去提高的。现在芯片的工艺,已经被台积电由原来的14纳米提高到了7纳米,再从7纳米提高到了5纳米。

芯片制造

5纳米,已经是当今最领先的芯片制造工艺。未来呢?未来还有更先进的芯片制造工艺吗?是3纳米还是2纳米?还是多少?

显然,芯片的制造工艺,它是不可能由14纳米、7纳米、5纳米、3纳米、2纳米这样一直小下去的。芯片的制造工艺,它是有物理极限的。

3纳米与2纳米,现在还没有成功量产,只是芯片哥对未来的预测。

芯片哥为什么会这么说呢?为什么说芯片的制造工艺不可能一直小下去呢?为什么它有物理极限呢?两个理由

1)光的频率

2)硅原子

光的频率

芯片的制造,离不开一个关键的设备,光刻机。没有光刻机,所有开发设计的芯片,无论功能有多先进,也无论功耗有多低,它都只能停留在图纸上,无法被生产制造出来。

现在国人为什么那么关注芯片这个话题?还不是因为我们在芯片问题上,被别人卡住脖子了。。是因为我们缺乏芯片的设计能力吗?不是,华为就是很好的例子。

是因为我们缺乏光刻机,尤其是荷兰的ASML光刻机,我们就算是拿着钱去买,荷兰人也不怎么情愿卖给我们,你说气人不?

荷兰ASML光刻机

光刻机从起初的UV光刻机水平,逐步提升到了DUV光刻机水平,再发展到现在的EUV光刻机水平。用中文来描述,UV光刻机就是紫外线光刻机,DUV光刻机就是深紫外线光刻机,EUV光刻机就是极深紫外线光刻机。

对光学稍微有点了解的小伙伴,都很清楚,光的颜色越靠近红色,它的频率越低;越靠近紫色,它的频率就越高。光的速度是一个常数,频率越高,也就是波长越小。

光谱

我们可以发现,EUV光刻机采用的光频率是极深紫外线频率,其对应的波长大约为10~15纳米;DUV光刻机采用的光频率是深紫外线频率,其对应的波长大约为200纳米;UV光刻机采用的光频率是紫外线频率,其对应的波长大约为360纳米。

也就是说,光刻机越先进,需要的光频率越高。

光的频率,它是一个物理客观存在的数值,是很难通过人为的手段去改变提高的。

由于光的频率,现在已经采用了极深紫外线频率,很难再找到更高频率的光线,所以光刻机的水平也很难再被提升。

光刻机技术得不到提升,直接导致芯片的制造工艺就得不到有效地提升,也就是芯片的制造工艺不可能由14纳米、7纳米、5纳米、3纳米、2纳米这样一直小下去,它是有物理极限的。

硅原子

在第三代半导体材料被大规模应用之前,现在市场上主流的芯片,仍是基于硅这个材料研发制造的。

硅,在元素周期表,它的序号是14,硅原子的直径大约为0.22nm.

硅原子

我们都知道,芯片的内部是由数以亿计的晶体管构成的。通过光刻机,将这些数以亿计的晶体管光刻在硅晶圆上,然后通过封装测试,最后才形成一个完整的芯片。

在同一个硅晶圆上,晶体管的数量越多,芯片的功能就越先进。只是在同一个硅晶圆上,晶体管的数量越多,晶体管的体积就会被要求做得越小。

硅晶圆

但晶体管做得再小,总不可能比晶圆的硅原子还小吧。在理论上,这显然是不可能的。

硅原子多大?

芯片哥刚刚列举出了它的数值。硅原子直径大约为0.22纳米。

也就是说,芯片的制造工艺是不可能超过0.22纳米。这个也是它的一个物理极限。

写到最后,小伙伴们是不是很清楚了,因为两个因素

一个是制造芯片需要的光刻机设备。光刻机采用光的频率,它是有物理极限的。光的频率是不可能被要求做到无限高的。

另一个是制造芯片需要的硅材料。芯片内部的晶体管,做得再小,是不可能比硅原子还小的,它是有物理极限的。

因此芯片的制造工艺它是有物理极限的。不可能像之前的那样,由14纳米、7纳米、5纳米、3纳米、2纳米这样一直小下去的,它肯定会停留在某个数值上的,直到无法被我们突破为止。

说道这,肯定有小伙伴问芯片哥,难道芯片的工艺,未来就没有发展了吗?就没有了新的突破了吗?就一直停留在现在的这个5纳米、3纳米水平吗?

这是不对滴。

想要继续在芯片的制造工艺有所突破,无非是改进类似于光刻机这样的设备性能,亦或是在芯片的材料方面去突破。

现在知道为什么我们国家在大力提倡,发展第三代半导体技术的原因了吧。就是想在芯片方面,突破国外的卡脖子封锁,实现我们中国在技术上占据更多的全球话语权。

本文由【芯片哥】原创撰写,请持续关注芯片哥,后面会定期更新有关于电子元器件和芯片,包括一些电子产品项目开发案例的相关内容。

#芯片# #光刻机# #半导体新星训练营#

相关问答

为什么芯片5nm是极限?

目前的芯片工作的模式还是经典逻辑电路。当制程小于5nm,量子效应占主导地位。譬如量子遂穿,测不准,纠缠,经典逻辑就工作不了了目前的芯片工作的模式还是经典...

芯片制造工艺的极限是几nm?

1.?2.目前,芯片制造工艺的极限已经达到了7纳米(nm)左右。这意味着芯片上的晶体管尺寸已经缩小到了7纳米的尺寸。这样的极限尺寸是由于物理限制和技术挑战所...

芯片工艺物理极限是7纳米,美国的1nm是什么概念?

纳米是长度的单位之一纳米和国际单位制中的长度单位米的换算关系1米=1x10^9nm7nm=7x10^-9m纳米是长度的单位之一纳米和国际单位制中的长度单位米的换算...

芯片最小能做多大?

最小能做2nm从目前半导体行业发展的趋势来看,芯片发展的极限在2-3nm左右,目前全球领先的芯片代工企业是台积电,芯片制程工艺为5nm。最小能做2nm从目前半导...

5纳米芯片到极限了吗?

芯片制造工艺目前主要存在两个困难。一由于光的衍射现象导致无法刻出更细的电路。二是随着晶体管尺寸的缩小,源极和栅极间的沟道也在不断缩短,当沟道缩短到...

5nm工艺制程是否是目前集成电路芯片的极限?有何依据?

而根据台积电最近公布的,所谓5nm制程的性能数据显示,和现在的初代7nm(注意它和5nm之间还隔着个7nmEUV工艺)相比,5nm芯片能够提供1.8倍的逻辑密度、性能提...emm...

碳基芯片的极限是多少纳米?

碳基芯片的理论极限是1纳米。碳基芯片目前还只是个研究方向,并未有实物出品。而且碳基芯片的优势并不如纳米制程的大小,而是其性能强大。理论上来说,如果用若...

手机芯片最低多少纳米?

假如用回14纳米的芯片,影响有多大,会比7纳米的差多少?用回14nm的芯片,对终端的影响还是会很大,会有性能的下降,耗电的增加,华为也可能会失去现在的国外的...假如...

硅基芯片物理极限是3nm吗?

目前,硅基芯片的物理极限被认为是在3纳米左右。随着技术的发展,芯片制造商正不断努力突破这一极限,以实现更小、更高性能的芯片。然而,随着尺寸的减小,面临...

芯片制造工艺能突破1纳米吗?如果达到了极限,是否意味着芯片的发展走到了尽头?

这么专业高精尖的问题,你跑到头条来问。。。似乎来错地方了吧?!这里是喷子的乐园,自媒体的天下。不过,也许会有那么几个自认为是砖家的家伙会跑来回答你,...

 吴继宏  清华铊中毒事件 
王经理: 180-0000-0000(微信同号)
10086@qq.com
北京海淀区西三旗街道国际大厦08A座
©2025  上海羊羽卓进出口贸易有限公司  版权所有.All Rights Reserved.  |  程序由Z-BlogPHP强力驱动
网站首页
电话咨询
微信号

QQ

在线咨询真诚为您提供专业解答服务

热线

188-0000-0000
专属服务热线

微信

二维码扫一扫微信交流
顶部